Large Language Model Slides

Large Language Model Best Practices - See best practices on LLM, chatbot building, common patterns. Learn impact on NLP, code development. Understand pros and cons of using oopen souce vs closed source models.
SLIDE1
SLIDE1
        
SLIDE2
SLIDE2
        
SLIDE3
SLIDE3
        
SLIDE4
SLIDE4
        
SLIDE5
SLIDE5
        
SLIDE6
SLIDE6
        
SLIDE7
SLIDE7
        
SLIDE8
SLIDE8
        
SLIDE9
SLIDE9
        
SLIDE10
SLIDE10
        
SLIDE11
SLIDE11
        
SLIDE12
SLIDE12
        
SLIDE13
SLIDE13
        
SLIDE14
SLIDE14
        
SLIDE15
SLIDE15
        
SLIDE16
SLIDE16
        
SLIDE17
SLIDE17
        
SLIDE18
SLIDE18
        
SLIDE19
SLIDE19
        
SLIDE20
SLIDE20
        
SLIDE21
SLIDE21
        
SLIDE22
SLIDE22
        
SLIDE23
SLIDE23
        
SLIDE24
SLIDE24
        
SLIDE25
SLIDE25
        
SLIDE26
SLIDE26
        
SLIDE27
SLIDE27
        
SLIDE28
SLIDE28
        
SLIDE29
SLIDE29
        
SLIDE30
SLIDE30
        
SLIDE31
SLIDE31
        
SLIDE32
SLIDE32
        
SLIDE33
SLIDE33
        


How can LLMs be fine-tuned for summarization?
LLMs (Large Language Models) like GPT-3 can be fine-tuned for summarization using the following approaches:
Supervised training - The simplest approach is to fine-tune the LLM using a large dataset of text-summary pairs. The model is trained to generate the corresponding summary given the input text.
This requires a sizable supervised dataset, which can be expensive to create. Public datasets like CNN/DailyMail can be used.

Self-supervised training - The LLM is trained using the original text as input and the first few sentences as the "summary". This creates weak supervision from the data itself.
The model is then fine-tuned on a smaller set of human-written summaries to improve accuracy. This approach requires less labeled data.

Reinforcement learning - The LLM is first trained autoencoding - to reproduce the input text. Then, rewards are given based on the quality and conciseness of the generated summary.
The model learns to generate better summaries through trial-and-error to maximize these rewards. However, this requires defining a good reward function.

Filtering and post-processing - Generated summaries from the LLM can be filtered and refined using techniques like:
• Extracting sentences with the highest similarity to human references • Removing repetitive sentences • Combining overlapping content into a single sentence, etc.
This requires minimal fine-tuning of the base LLM but provides less control over the summary style.

Prompting - The LLM can be "prompted" to generate a summary using natural language instructions. For example:
In 2-3 short paragraphs, summarize the main points of the following text:
This relies more on the pre-trained LLM abilities and requires less labeled data. But accuracy tends to be lower.
So in short, there are a variety of approaches to fine-tune LLMs for summarization - from fully supervised to minimally supervised. The choice depends on the available data, required accuracy and custom need.